Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38608316

RESUMO

OBJECTIVES: The aim of this study was to evaluate Cu-64 PET phantom image quality using Bayesian Penalized Likelihood (BPL) and Ordered Subset Expectation Maximum with point-spread function modeling (OSEM-PSF) reconstruction algorithms. In the BPL, the regularization parameter ß was varied to identify the optimum value for image quality. In the OSEM-PSF, the effect of acquisition time was evaluated to assess the feasibility of shortened scan duration. Methods: A NEMA IEC PET body phantom was filled with known activities of water soluble Cu-64. The phantom was imaged on a PET/CT scanner and was reconstructed using BPL and OSEM-PSF algorithms. For the BPL reconstruction, various ß values (150, 250, 350, 450, and 550) were evaluated. For the OSEM-PSF algorithm, reconstructions were performed using list-mode data intervals ranging from 7.5 to 240 seconds. Image quality was assessed by evaluating the signal to noise ratio (SNR), contrast to noise ratio (CNR), and background variability (BV). Results: The SNR and CNR were higher in images reconstructed with BPL compared to OSEM-PSF. Both the SNR and CNR increased with increasing ß, peaking at ß = 550. The CNR for all ß, sphere sizes and tumor-to-background ratios (TBRs) satisfied the Rose criterion for image detectability (CNR > 5). BPL reconstructed images with ß = 550 demonstrated the highest improvement in image quality. For OSEM-PSF reconstructed images with list-mode data duration > 120 seconds, the noise level and CNR were not significantly different from the baseline 240-second list-mode data duration. Conclusions: BPL reconstruction improved Cu-64 PET phantom image quality by increasing SNR and CNR relative to OSEM-PSF reconstruction. Additionally, this study demonstrated scan time can be reduced from 240 to 120 seconds when using OSEM-PSF reconstruction while maintaining similar image quality. This study provides baseline data that may guide future studies aimed to improve clinical Cu-64 imaging.

2.
Phys Eng Sci Med ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078995

RESUMO

This study investigated the estimation of kinetic parameters and production of related parametric Ki images in FDG PET imaging using the proposed shortened protocol (three 3-min/bed routine static images) by means of the simulated annealing (SA) algorithm. Six realistic heterogeneous tumors and various levels of [18F] FDG uptake were simulated by the XCAT phantom. An irreversible two-tissue compartment model (2TCM) using population-based input function was employed. By keeping two routine clinical scans fixed (60-min and 90-min post injection), the effect of the early scan time on optimizing the estimation of the pharmacokinetic parameters was investigated. The SA optimization algorithm was applied to estimate micro- and macro-parameters (K1, k2, k3, Ki). The minimum bias for most parameters was observed at a scan time of 20-min, which was < 10%. A highly significant correlation (> 0.9) as well as limited bias (< 10%) were observed between kinetic parameters generated from two methods [two-tissue compartment full dynamic scan (2TCM-full) and two-tissue compartment by SA algorithm (2TCM-SA)]. The analysis showed a strong correlation (> 0.8) between (2TCM-SA) Ki and SUV images. In addition, the tumor-to-background ratio (TBR) metric in the parametric (2TCM-SA) Ki images was significantly higher than SUV, although the SUV images provide better Contrast-to-noise ratio relative to parametric (2TCM-SA) Ki images. The proposed shortened protocol by the SA algorithm can estimate the kinetic parameters in FDG PET scan with high accuracy and robustness. It was also concluded that the parametric Ki images obtained from the 2TCM-SA as a complementary image of the SUV possess more quantification information than SUV images and can be used by the nuclear medicine specialist. This method has the potential to be an alternative to a full dynamic PET scan.

3.
J Med Phys ; 48(3): 268-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969149

RESUMO

Purpose: According to the revised Task Group number 43 recommendations, a brachytherapy source must be validated against a similar or identical source before its clinical application. The purpose of this investigation is to verify the dosimetric data of the high dose rate (HDR) BEBIG 192Ir source (Ir2.A85-2). Materials and Methods: The HDR 192Ir encapsulated seed was simulated and its main dosimetric data were calculated using Geant4 Application for Tomographic Emission (GATE) simulation code. Cubic cells were used for the calculation of dose rate constant and radial dose function while for anisotropy function ring cells were used. DoseActors were simulated and attached to the respective cells to obtain the required data. Results: The dose rate constant was obtained as 1.098 ± 0.003 cGy.h - 1.U - 1, differing by 1.0% from the reference value reported by Granero et al. Similarly, the calculated values for radial dose and anisotropy functions presented good agreement with the results obtained by Granero et al. Conclusion: The results of this study suggest that the GATE Monte Carlo code is a valid toolkit for benchmarking brachytherapy sources and can be used for brachytherapy simulation-based studies and verification of brachytherapy treatment planning systems.

4.
World J Nucl Med ; 22(3): 196-202, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854082

RESUMO

Background This study was aimed to optimize the fluorodeoxyglucose (FDG)-administered dose and scan time based on patient specifications using a highly sensitive five-ring bismuth germanium oxide (BGO)-based positron emission tomography/computed tomography (PET/CT) scanner (Discovery IQ). Methods We retrospectively analyzed 101 whole-body 18 F-FDG PET/CT images. Patient data were reconstructed using ordered subset expectation maximization with resolution recovery algorithms (OSEM + SharpIR). Signal-to-noise ratio (SNR) was calculated for each patient, standardized to SNR norm , and plotted against three body index parameters (weight, body mass index, and lean body mass). Two professional physicians blindly examined image quality at different patient time per bed positions to determine the minimum acceptable quality. To select images of acceptable quality, the noise index parameter was also measured. A new dose-time product (DTP) was established for each patient, and a predicted injected dose was assumed. Results We found an almost linear association between patient weight and normalized SNR, and patient weight had the highest R 2 in the fitting. The redesigned DTP can reduce results by approximately 74 and 38% compared with ordinary DTP for 80- and 160-s scan durations. The new dose regimen formula was found to be DTP = c/t × m 1.24 , where m is the patient weight, t is the scan time per bed position, and c is 1.8 and 4.3 for acceptable and higher confidence states, respectively, in Discovery IQ PET/CT. Conclusion Patient weight is the best clinical parameter for the implementation of 18 F-FDG PET/CT image quality assessment. A new dose-time regimen based on body weight was proposed for use in highly sensitive five-ring BGO PET-CT scanners to significantly reduce the injection dose and scan times while maintaining sufficient image quality for diagnosis.

5.
EJNMMI Phys ; 10(1): 63, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843705

RESUMO

BACKGROUND: The Q.Clear algorithm is a fully convergent iterative image reconstruction technique. We hypothesize that different PET/CT scanners with distinct crystal properties will require different optimal settings for the Q.Clear algorithm. Many studies have investigated the improvement of the Q.Clear reconstruction algorithm on PET/CT scanner with LYSO crystals and SiPM detectors. We propose an optimum penalization factor (ß) for the detection of rectal cancer and its metastases using a BGO-based detector PET/CT system which obtained via accurate and comprehensive phantom and clinical studies. METHODS: 18F-FDG PET-CT scans were acquired from NEMA phantom with lesion-to-background ratio (LBR) of 2:1, 4:1, 8:1, and 15 patients with rectal cancer. Clinical lesions were classified into two size groups. OSEM and Q.Clear (ß value of 100-500) reconstruction was applied. In Q.Clear, background variability (BV), contrast recovery (CR), signal-to-noise ratio (SNR), SUVmax, and signal-to-background ratio (SBR) were evaluated and compared to OSEM. RESULTS: OSEM had 11.5-18.6% higher BV than Q.Clear using ß value of 500. Conversely, RC from OSEM to Q.Clear using ß value of 500 decreased by 3.3-7.7% for a sphere with a diameter of 10 mm and 2.5-5.1% for a sphere with a diameter of 37 mm. Furthermore, the increment of contrast using a ß value of 500 was 5.2-8.1% in the smallest spheres compared to OSEM. When the ß value was increased from 100 to 500, the SNR increased by 49.1% and 30.8% in the smallest and largest spheres at LBR 2:1, respectively. At LBR of 8:1, the relative difference of SNR between ß value of 100 and 500 was 43.7% and 44.0% in the smallest and largest spheres, respectively. In the clinical study, as ß increased from 100 to 500, the SUVmax decreased by 47.7% in small and 31.1% in large lesions. OSEM demonstrated the least SUVmax, SBR, and contrast. The decrement of SBR and contrast using OSEM were 13.6% and 12.9% in small and 4.2% and 3.4%, respectively, in large lesions. CONCLUSIONS: Implementing Q.Clear enhances quantitative accuracies through a fully convergent voxel-based image approach, employing a penalization factor. In the BGO-based scanner, the optimal ß value for small lesions ranges from 200 for LBR 2:1 to 300 for LBR 8:1. For large lesions, the optimal ß value is between 400 for LBR 2:1 and 500 for LBR 8:1. We recommended ß value of 300 for small lesions and ß value of 500 for large lesions in clinical study.

6.
J Med Signals Sens ; 13(4): 280-289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809014

RESUMO

Background: Simulation of tomographic imaging systems with fan-beam geometry, estimation of scattered beam profile using Monte Carlo techniques, and scatter correction using estimated data have always been new challenges in the field of medical imaging. The most important aspect is to ensure the results of the simulation and the accuracy of the scatter correction. This study aims to simulate 128-slice computed tomography (CT) scan using the Geant4 Application for Tomographic Emission (GATE) program, to assess the validity of this simulation and estimate the scatter profile. Finally, a quantitative comparison of the results is made from scatter correction. Methods: In this study, 128-slice CT scan devices with fan-beam geometry along with two phantoms were simulated by GATE program. Two validation methods were performed to validate the simulation results. The data obtained from scatter estimation of the simulation was used in a projection-based scatter correction technique, and the post-correction results were analyzed using four quantities, such as: pixel intensity, CT number inaccuracy, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Results: Both validation methods have confirmed the appropriate accuracy of the simulation. In the quantitative analysis of the results before and after the scatter correction, it should be said that the pixel intensity patterns were close to each other, and the accuracy of the CT scan number reached <10%. Moreover, CNR and SNR have increased by more than 30%-65% respectively in all studied areas. Conclusion: The comparison of the results before and after scatter correction shows an improvement in CNR and SNR while a reduction in cupping artifact according to pixel intensity pattern and enhanced CT number accuracy.

7.
Med Phys ; 50(11): 6815-6827, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37665768

RESUMO

BACKGROUND: The limited axial field-of-view (FOV) of conventional clinical positron emission tomography (PET) scanners (∼15 to 26 cm) allows detecting only 1% of all coincidence photons, hence limiting significantly their sensitivity. To overcome this limitation, the EXPLORER consortium developed the world's first total-body PET/CT scanner that significantly increased the sensitivity, thus enabling to decrease the scan duration or injected dose. PURPOSE: The purpose of this study is to perform and validate Monte Carlo simulations of the uEXPLORER PET scanner, which can be used to devise novel conceptual designs and geometrical configurations through obtaining features that are difficult to obtain experimentally. METHODS: The total-body uEXPLORER PET scanner was modeled using GATE Monte Carlo (MC) platform. The model was validated through comparison with experimental measurements of various performance parameters, including spatial resolution, sensitivity, count rate performance, and image quality, according to NEMA-NU2 2018 standards. Furthermore, the effects of the time coincidence window and maximum ring difference on the count rate and noise equivalent count rate (NECR) were evaluated. RESULTS: Overall, the validation study showed that there was a good agreement between the simulation and experimental results. The differences between the simulated and experimental total sensitivity for the NEMA and extended phantoms at the center of the FOV were 2.3% and 0.0%, respectively. The difference in peak NECR was 9.9% for the NEMA phantom and 1.0% for the extended phantom. The average bias between the simulated and experimental results of the full-width-at-half maximum (FWHM) for six different positions and three directions was 0.12 mm. The simulations showed that using a variable coincidence time window based on the maximum ring difference can reduce the effect of random coincidences and improve the NECR compared to a constant time coincidence window. The NECR corresponding to 252-ring difference was 2.11 Mcps, which is larger than the NECR corresponding to 336-ring difference (2.04 Mcps). CONCLUSION: The developed MC model of the uEXPLORER PET scanner was validated against experimental measurements and can be used for further assessment and design optimization of the scanner.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Imagens de Fantasmas
8.
Eur J Nucl Med Mol Imaging ; 51(1): 40-53, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37682303

RESUMO

PURPOSE: Image artefacts continue to pose challenges in clinical molecular imaging, resulting in misdiagnoses, additional radiation doses to patients and financial costs. Mismatch and halo artefacts occur frequently in gallium-68 (68Ga)-labelled compounds whole-body PET/CT imaging. Correcting for these artefacts is not straightforward and requires algorithmic developments, given that conventional techniques have failed to address them adequately. In the current study, we employed differential privacy-preserving federated transfer learning (FTL) to manage clinical data sharing and tackle privacy issues for building centre-specific models that detect and correct artefacts present in PET images. METHODS: Altogether, 1413 patients with 68Ga prostate-specific membrane antigen (PSMA)/DOTA-TATE (TOC) PET/CT scans from 3 countries, including 8 different centres, were enrolled in this study. CT-based attenuation and scatter correction (CT-ASC) was used in all centres for quantitative PET reconstruction. Prior to model training, an experienced nuclear medicine physician reviewed all images to ensure the use of high-quality, artefact-free PET images (421 patients' images). A deep neural network (modified U2Net) was trained on 80% of the artefact-free PET images to utilize centre-based (CeBa), centralized (CeZe) and the proposed differential privacy FTL frameworks. Quantitative analysis was performed in 20% of the clean data (with no artefacts) in each centre. A panel of two nuclear medicine physicians conducted qualitative assessment of image quality, diagnostic confidence and image artefacts in 128 patients with artefacts (256 images for CT-ASC and FTL-ASC). RESULTS: The three approaches investigated in this study for 68Ga-PET imaging (CeBa, CeZe and FTL) resulted in a mean absolute error (MAE) of 0.42 ± 0.21 (CI 95%: 0.38 to 0.47), 0.32 ± 0.23 (CI 95%: 0.27 to 0.37) and 0.28 ± 0.15 (CI 95%: 0.25 to 0.31), respectively. Statistical analysis using the Wilcoxon test revealed significant differences between the three approaches, with FTL outperforming CeBa and CeZe (p-value < 0.05) in the clean test set. The qualitative assessment demonstrated that FTL-ASC significantly improved image quality and diagnostic confidence and decreased image artefacts, compared to CT-ASC in 68Ga-PET imaging. In addition, mismatch and halo artefacts were successfully detected and disentangled in the chest, abdomen and pelvic regions in 68Ga-PET imaging. CONCLUSION: The proposed approach benefits from using large datasets from multiple centres while preserving patient privacy. Qualitative assessment by nuclear medicine physicians showed that the proposed model correctly addressed two main challenging artefacts in 68Ga-PET imaging. This technique could be integrated in the clinic for 68Ga-PET imaging artefact detection and disentanglement using multicentric heterogeneous datasets.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Artefatos , Radioisótopos de Gálio , Privacidade , Tomografia por Emissão de Pósitrons/métodos , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos
9.
Abdom Radiol (NY) ; 48(11): 3297-3309, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37453942

RESUMO

PURPOSE: Utilizing [18F]Fluoro-2-deoxy-D-glucose Positron Emission Tomography/Computed Tomography ([18F]FDG PET/CT) scans on primary colon cancer (CC) patients including with liver metastases (LM), we aimed to determine the relationship between structural CT radiomic features and metabolic PET standard uptake value (SUV) in these patients. MATERIAL AND METHOD: A retrospective analysis was performed on 60 patients with primary CC, of which 40 had liver metastases that were more than 2 cm in diameter. [18F]FDG PET/CT was used to calculate SUVmax, and 42 CT radiomic characteristics were extracted from non-enhanced CT images. Tumors were manually segmented on fused PET/CT scans by two experienced nuclear medicine physicians. Sixty primary CC and forty LM lesions were segmented accordingly. In the cases of multiple LM lesions, the lesion with the largest diameter was chosen for segmentation. In a univariate analysis approach, we used Spearman correlation with multiple testing correction (Benjamini-Hutchberg false discovery rate (FDR), α = 0.05) to ascertain the relationship between SUVmax and CT radiomic features. RESULT: Twenty-two (52.3%) and twenty-six (61.9%) CT radiomic features were found to be significantly correlated with SUVmax values of primary CC (n = 60) and LM (n = 40) lesions, respectively (FDR-corrected p value < 0.05 and 0.6 < |ρ| < 1). GLCM_homogeneity (ρ = 0.839), GLCM_dissimilarity (ρ = - 0.832), GLZLM_ZLNU (ρ = 0.827), and GLCM_contrast (ρ = - 0.815) were the 4 features most correlated with SUVmax in CC. On the other hand, in LM, the 4 features most correlated with SUVmax were GLRLM_LRHGE (ρ = 0.859), GLRLM_LRE (ρ = 0.859), GLRLM_LRLGE (ρ = 0.857), and GLRLM_RP (ρ = - 0.820). CONCLUSION: We investigated the relationship between SUVmax of preoperative primary CC lesions and their LM with CT radiomic features. We found some CT radiomic features having relationships with the metabolic characteristics of lesions. This work suggests that non-invasive predictive imaging biomarkers for precision medicine can be derived from CT radiomic.

10.
Phys Eng Sci Med ; 46(3): 1297-1308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439965

RESUMO

In this study, we aimed to examine the effect of varying ß-values in the block sequential regularized expectation maximization (BSREM) algorithm under differing lesion sizes to determine an optimal penalty factor for clinical application. The National Electrical Manufacturers Association phantom and 15 prostate cancer patients were injected with 68Ga-PSMA and scanned using a GE Discovery IQ PET/CT scanner. Images were reconstructed using ordered subset expectation maximization (OSEM) and BSREM with different ß-values. Then, the background variability (BV), contrast recovery, signal-to-noise ratio, and lung residual error were measured from the phantom data, and the signal-to-background ratio (SBR) and contrast from the clinical data. The increment of BV using a ß-value of 100 was 120.0%, and the decrement of BV using a ß-value of 1000 was 40.5% compared to OSEM. As ß decreased from 1000 to 100, the [Formula: see text] increased by 59.0% for a sphere with a diameter of 10 mm and 26.4% for a sphere with a diameter of 37 mm. Conversely, [Formula: see text] increased by 140.5% and 29.0% in the smallest and largest spheres, respectively. Furthermore, the Δ[Formula: see text] and Δ[Formula: see text] were - 41.1% and - 36.7%, respectively. In the clinical study, OSEM exhibited the lowest SBR and contrast. When the ß-value was reduced from 500 to 100, the SBR and contrast increased by 69.7% and 71.8% in small and 35.6% and 33.0%, respectively, in large lesions. Moreover, the optimal ß-value decreased as lesion size decreased. In conclusion, a ß-value of 400 is optimal for small lesion reconstruction, while ß-values of 600 and 500 are optimal for large lesions in phantom and clinical studies, respectively.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia Computadorizada por Raios X
11.
World J Nucl Med ; 22(2): 124-129, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37223627

RESUMO

Objective This study aims to assess the impact of various regions of interest (ROIs) and volumes of interest (VOIs) delineations on the reproducibility of liver signal-to-noise-ratio (SNRliver) measurements, as well as to find the most reproducible way to estimate it in gallium-68 positron emission tomography ( 68 Ga-PET) imaging. We also investigated the SNRliver-weight relationship for these ROIs and VOIs delineations. Methods A cohort of 40 patients (40 males; mean weight: 76.5 kg [58-115 kg]) with prostate cancer were included. 68 Ga-PET/CT imaging (mean injected activity: 91.4 MBq [51.2 MBq to 134.1 MBq] was performed on a 5-ring bismuth germanium oxide-based Discovery IQ PET/CT using ordered subset expectation maximization image reconstruction algorithm. Afterward, circular ROIs and spherical VOIs with two different diameters of 30 and 40 mm were drawn on the right lobe of the livers. The performance of the various defined regions was evaluated by the average standardized uptake value (SUV mean ), standard deviation (SD) of the SUV (SUV SD ), SNR liver , and SD of the SNR liver metrics. Results There were no significant differences in SUV mean among the various ROIs and VOIs ( p > 0.05). On the other hand, the lower SUV SD was obtained by spherical VOI with diameter of 30 mm. The largest SNR liver was obtained by ROI (30 mm). The SD of SNR liver with ROI (30 mm) was also the largest, while the lowest SD of SNR liver was observed for VOI (40 mm). There is a higher correlation coefficient between the patient-dependent parameter of weight and the image quality parameter of SNRliver for both VOI (30 mm) and VOI (40 mm) compared to the ROIs. Conclusion Our results indicate that SNR liver measurements are affected by the size and shape of the respective ROIs and VOIs. The spherical VOI with a 40 mm diameter leads to more stable and reproducible SNR measurement in the liver.

12.
Int J Radiat Biol ; 99(3): 446-458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35930426

RESUMO

BACKGROUND AND OBJECTIVE: This study was aimed to investigate the ability of 18F-Fluro-deoxy-glucose (18F-FDG)-based micro-positron emission tomography (microPET) imaging to evaluate the efficacy of telmisartan, a highly selective angiotensin II receptor antagonist (ARA), in intestinal tissue recovery process after in vivo irradiation. METHODS: Male Balb/c mice were randomly divided into four groups of control, telmisartan, irradiation, and telmisartan + irradiation. A solution of telmisartan in phosphate-buffered saline (PBS) was administered orally at 12 mg/kg body weight for seven consecutive days prior to whole body exposing to a single sub-lethal dose of 5 Gy X-rays. The mice were imaged using 18F-FDG microPET at 9 and 30 days post-irradiation. The 18F-FDG uptake in jejunum was determined according to the mean standardized uptake value (SUVmean) index. Tissues were also processed in similar time points for histological analysis. RESULTS: The 18F-FDG microPET imaging confirmed the efficacy of telmisartan as a potent attenuating agent for ionizing radiation-induced injury of intestine in mice model. The results were also in line with the histological analysis indicating that pretreatment with telmisartan reduced damage to the villi, crypts, and intestinal mucosa compared with irradiated and non-treated group from day 9 to 30 after irradiation. CONCLUSION: The results revealed that 18F-FDG microPET imaging could be a good candidate to replace time-consuming and invasive biological techniques for screening of radioprotective agents. These findings were also confirmed by histological examinations which indicated that telmisartan can effectively attenuates radiation injury caused by ionizing-irradiation.


Assuntos
Fluordesoxiglucose F18 , Lesões por Radiação , Masculino , Camundongos , Animais , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Lesões por Radiação/diagnóstico , Intestinos/diagnóstico por imagem
13.
Phys Med Biol ; 67(21)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36162408

RESUMO

Objective.To improve positron emission tomography (PET) image quality, we aim to generate images of quality comparable to standard scan duration images using short scan duration (1/8 and 1/16 standard scan duration) inputs and assess the generated standard scan duration images quantitative and qualitatively. Also, the effect of training dataset properties (i.e. body mass index (BMI)) on the performance of the model(s) will be explored.Approach.Whole-body PET scans of 42 patients (4118F-FDG and one68Ga-PSMA) scanned with standard radiotracer dosage were included in this study. One18F-FDG patient data was set aside and the remaining 40 patients were split into four subsets of 10 patients with different mean patient BMI. Multiple copies of a developed cycle-GAN network were trained on each subset to predict standard scan images using 1/8 and 1/16 short duration scans. Also, the models' performance was tested on a patient scanned with the68Ga-PSMA radiotracer. Quantitative performance was tested using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and normalized root mean squared error (NRMSE) metrics, and two nuclear medicine specialists analyzed images qualitatively.Main results.The developed cycle-GAN model improved the PSNR, SSIM, and NRMSE of the 1/8 and 1/16 short scan duration inputs both18F-FDG and68Ga-PSMA radiotracers. Although, quantitatively PSNR, SSIM, and NRMSE of the 1/16 scan duration level were improved more than 1/8 counterparts, however, the later were qualitatively more appealing. SUVmeanand SUVmaxof the generated images were also indicative of the improvements. The cycle-GAN model was much more capable in terms of image quality improvements and speed than the NLM denoising method. All results proved statistically significant using the paired-sample T-Test statistical test (p-value < 0.05).Significance.Our suggested approach based on cycle-GAN could improve image quality of the 1/8 and 1/16 short scan-duration inputs through noise reduction both quantitively (PSNR, SSIM, NRMSE, SUVmean, and SUVmax) and qualitatively (contrast, noise, and diagnostic capability) to the level comparable to the standard scan-duration counterparts. The cycle-GAN model(s) had a similar performance on the68Ga-PSMA to the18F-FDG images and could improve the images qualitatively and quantitatively but requires more extensive study. Overall, images predicted from 1/8 short scan-duration inputs had the upper hand compared with 1/16 short scan-duration inputs.


Assuntos
Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia por Emissão de Pósitrons , Razão Sinal-Ruído
14.
Radiol Phys Technol ; 15(4): 387-397, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069978

RESUMO

This study aimed to evaluate the dose modulation potential of static and dynamic steel-shielded applicators using the Geant4 Application for Emission Tomography (GATE) Monte Carlo code for the treatment of vaginal cancer. The GATE TOOLKIT (version 9.0) was used to simulate vaginal cancer intensity-modulated brachytherapy (IMBT) in a pelvic water-equivalent phantom. IMBT performance of a multichannel static and single-channel dynamic steel-shielded applicator was compared to that of a conventional multichannel Plexiglas applicator. DoseActors were defined to calculate the absorbed dose and attached to the voxelized target and organs at risk (OARs). 60Co and 192Ir high-dose-rate seeds were used as irradiation sources. Dynamic IMBT decreased the D2cc of the rectum and bladder by 28.67 and 28.11% using the 60Co source and by 40.00 and 36.34% using the 192Ir source, respectively. Static IMBT decreased the D2cc for the rectum and bladder by 11.69 and 9.29% using the 60Co source and by 22.21 and 17.71% using the 192Ir source, respectively. In contrast, absorbed dose parameters (D5, D90, and D100) for the target in the three techniques showed a mean relative variation of 0.96% (0.00-7.49%) for both sources. Static and dynamic IMBT using steel-shielded applicators provided relatively better OAR protection while maintaining similar target coverage in the treatment of vaginal cancer.


Assuntos
Braquiterapia , Neoplasias Vaginais , Feminino , Humanos , Braquiterapia/métodos , Neoplasias Vaginais/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Aço
15.
Nucl Med Commun ; 43(9): 1004-1014, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35836388

RESUMO

OBJECTIVES: This study aimed to measure standardized uptake value (SUV) variations across different PET/computed tomography (CT) scanners to harmonize quantification across systems. METHODS: We acquired images using the National Electrical Manufacturers Association International Electrotechnical Commission phantom from three PET/CT scanners operated using routine imaging protocols at each site. The SUVs of lesions were assessed in the presence of reference values by a digital reference object (DRO) and recommendations by the European Association of Nuclear Medicine (EANM/EARL) to measure inter-site variations. For harmonization, Gaussian filters with tuned full width at half maximum (FWHM) values were applied to images to minimize differences in SUVs between reference and images. Inter-site variation of SUVs was evaluated in both pre- and postharmonization situations. Test-retest analysis was also carried out to evaluate repeatability. RESULTS: SUVs from different scanners became significantly more consistent, and inter-site differences decreased for SUV mean , SUV max and SUV peak from 17.3, 20.7, and 15.5% to 4.8, 4.7, and 2.7%, respectively, by harmonization ( P values <0.05 for all). The values for contrast-to-noise ratio in the smallest lesion of the phantom verified preservation of image quality following harmonization (>2.8%). CONCLUSIONS: Harmonization significantly lowered variations in SUV measurements across different PET/CT scanners, improving reproducibility while preserving image quality.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes
16.
J Biomed Phys Eng ; 12(3): 277-284, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35698535

RESUMO

Background: Radiation-induced hematopoietic suppression and myelotoxicity can occur due to the nuclear accidents, occupational irradiation and therapeutic interventions. Bone marrow dysfunction has always been one of the most important causes of morbidity and mortality after ionizing irradiation. Objective: This study aims to investigate the protective effect of telmisartan against radiation-induced bone marrow injuries in a Balb/c mouse model. Material and Methods: In this experimental study, male Balb/c mice were divided into four groups as follow: group 1: mice received phosphate buffered saline (PBS) without irradiation, group 2: mice received a solution of telmisartan in PBS without irradiation, group 3: mice received PBS with irradiation, and group 4: mice received a solution of telmisartan in PBS with irradiation. A solution of telmisartan was prepared and administered orally at 12 mg/kg body weight for seven consecutive days prior to whole body exposing to a single sub-lethal dose of 5 Gy X-rays. Protection of bone marrow against radiation induced damage was investigated by Hematoxylin-Eosin (HE) staining assay at 3, 9, 15 and 30 days after irradiation. Results: Histopathological analysis indicated that administration of telmisartan reduced X-radiation-induced damage and improved bone marrow histology. The number of different cell types in bone marrow, including polymorphonuclear /mononuclear cells and megakaryocytes significantly increased in telmisartan treated group compared to the only irradiated group at all-time points. Conclusion: The results of the present study demonstrated an efficient radioprotective effect of telmisartan in mouse bone marrow against sub-lethal X-irradiation.

17.
Cardiovasc Toxicol ; 22(7): 646-654, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35522359

RESUMO

This study was designed to indicate the cardiotoxicity due to 99mTc-MIBI injection in myocardial perfusion imaging in wistar Rats. In addition, protective effect of hesperidin/diosmin compound (HDC) against the cardiotoxicity was evaluated. Twenty five male rats were randomly divided into five groups. The rats in Group 1 (control) only received PBS. For Group 2 (HDC only) the rats treated with only HDC. The rats in Group 3 (radiation) received PBS before injection and exposure to 1 mCi 99mTc-MIBI. The rats in Group 4 (HDC + radiation) treated with HDC before exposure. For Group 5 (radiation + HDC) the rats were exposed and thereafter administered HDC. The Animals of this study were orally administered 100 mg/kg/day of the HDC for 7 days. Then, the rats were sacrificed and afterwards their heart tissues were carefully extracted for biochemical and histopathological evaluations. According to our results in the radiation group, the rate of rupture of cardiomyocyte fibers was higher than other groups, and in some fibers, the presence of lymphocytes was observed. Relative improvement was observed in radiation + HDC group compared to the radiation group and also a small number of cardiomyocyte fibers were torn and in some fibers, the presence of lymphocytes was observed, which was less than the model group. Collagen deposition significantly increased in radiation group compared to control group (P < 0.05). It can be seen that the percentage of collagen deposition decreased substantially in the group treated with HDC before or after radiation compared to radiation group (P < 0.05). The MDA activities significantly reduced (P < 0.05) in both (HDC + radiation) and (radiation + HDC) groups. SOD activity significantly increased in both (radiation + HDC) and (HDC + radiation) groups compared to that of radiation group (P < 0.05). It could be concluded that the HDC is safe and promising useful therapeutic agent in radiation induced cardiotoxicity for patients undergoing nuclear medicine procedures.


Assuntos
Diosmina , Hesperidina , Animais , Cardiotoxicidade/tratamento farmacológico , Diosmina/farmacologia , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Humanos , Masculino , Ratos , Ratos Wistar , Tecnécio Tc 99m Sestamibi
18.
Heliyon ; 8(3): e09168, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35368537

RESUMO

Purpose: This study aims to validate the dosimetric characteristics of High Dose Rate (HDR) 60Co source (Co0.A86 model) using GATE Geant4-based Monte Carlo code. According to the recommendation of the American Association of Physicists in Medicine (AAPM) task group report number 43, the dosimetric parameters of a new brachytherapy source should be verified either experimentally or by Monte Carlo calculation before clinical applications. The validated 60Co source in this study will be used for the simulation of intensity-modulated brachytherapy (IMBT) of vaginal cancer using the same GATE Geant4-based Monte Carlo code in the future. Materials and methods: GATE (version 9.0) simulation code was used to model and calculate the required TG-43U1 dosimetric data of the 60Co HDR source. DoseActors were defined for calculation of dose rate constant, radial dose function, and anisotropy function in a water phantom with an 80 cm radius. Results: The dose rate constant was obtained as 1.070 ± 0.008 cGy . h - 1 . U - 1 which shows a relative difference of 2.01% compared to the consensus value, 1.092  â€‹cGy . h - 1 . U - 1 . The calculated results of anisotropy and radial dose functions starting from 0.1 cm to 10 cm around the source showed excellent agreement with the results of published studies. The mean variation of the radial dose and anisotropy functions values from the consensus data were 1% and 0.9% respectively. Conclusion: Findings from this investigation revealed that the validation of the HDR 60Co source is feasible by the GATE Geant4-based Monte Carlo code. As a result, the GATE Monte Carlo code can be used for the verification of the brachytherapy treatment planning system.

19.
Eur J Nucl Med Mol Imaging ; 49(5): 1508-1522, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34778929

RESUMO

PURPOSE: This work was set out to investigate the feasibility of dose reduction in SPECT myocardial perfusion imaging (MPI) without sacrificing diagnostic accuracy. A deep learning approach was proposed to synthesize full-dose images from the corresponding low-dose images at different dose reduction levels in the projection space. METHODS: Clinical SPECT-MPI images of 345 patients acquired on a dedicated cardiac SPECT camera in list-mode format were retrospectively employed to predict standard-dose from low-dose images at half-, quarter-, and one-eighth-dose levels. To simulate realistic low-dose projections, 50%, 25%, and 12.5% of the events were randomly selected from the list-mode data through applying binomial subsampling. A generative adversarial network was implemented to predict non-gated standard-dose SPECT images in the projection space at the different dose reduction levels. Well-established metrics, including peak signal-to-noise ratio (PSNR), root mean square error (RMSE), and structural similarity index metrics (SSIM) in addition to Pearson correlation coefficient analysis and clinical parameters derived from Cedars-Sinai software were used to quantitatively assess the predicted standard-dose images. For clinical evaluation, the quality of the predicted standard-dose images was evaluated by a nuclear medicine specialist using a seven-point (- 3 to + 3) grading scheme. RESULTS: The highest PSNR (42.49 ± 2.37) and SSIM (0.99 ± 0.01) and the lowest RMSE (1.99 ± 0.63) were achieved at a half-dose level. Pearson correlation coefficients were 0.997 ± 0.001, 0.994 ± 0.003, and 0.987 ± 0.004 for the predicted standard-dose images at half-, quarter-, and one-eighth-dose levels, respectively. Using the standard-dose images as reference, the Bland-Altman plots sketched for the Cedars-Sinai selected parameters exhibited remarkably less bias and variance in the predicted standard-dose images compared with the low-dose images at all reduced dose levels. Overall, considering the clinical assessment performed by a nuclear medicine specialist, 100%, 80%, and 11% of the predicted standard-dose images were clinically acceptable at half-, quarter-, and one-eighth-dose levels, respectively. CONCLUSION: The noise was effectively suppressed by the proposed network, and the predicted standard-dose images were comparable to reference standard-dose images at half- and quarter-dose levels. However, recovery of the underlying signals/information in low-dose images beyond a quarter of the standard dose would not be feasible (due to very poor signal-to-noise ratio) which will adversely affect the clinical interpretation of the resulting images.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Perfusão , Estudos Retrospectivos , Razão Sinal-Ruído , Tomografia Computadorizada de Emissão de Fóton Único
20.
Radiat Prot Dosimetry ; 190(2): 208-216, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32692354

RESUMO

This study aimed to determine the effective doses of caregivers taking care of non-cancerous patients treated with iodine-131 (I-131). Patients (administered 185-1110 MBq of I-131) were given specific radiation safety instructions (RSI). Afterwards, caregivers were provided with thermoluminescent (TLD) dosimeter badges to be worn for 12-28 days when taking care of the patients. At the end of this period, TLD measurements were obtained. Results showed that caregivers' mean effective dose was 0.15 ± 0.15 mSv, which is far less than the international recommendations of 5 mSv. Furthermore, the effective doses had no significant correlation with administered I-131 activity to the patients, distance from the hospital, caregivers' age, educational level and mode of transport. Our study showed that radiation doses received by caregivers of non-cancerous patients are higher than that of cancerous patients, nevertheless their received doses were within the international limits, thereby indicating good compliance by the caregivers to RSI.


Assuntos
Radioisótopos do Iodo , Medicina Nuclear , Família , Humanos , Radioisótopos do Iodo/análise , Radioisótopos do Iodo/uso terapêutico , Doses de Radiação , Glândula Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...